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Abstract

The strength reliability of linearly elastic (up to failure) beams, made from random heterogeneous microstructures is

studied, based on the weakest link approach. Heterogeneity is confined to the longitudinal direction. The problem is

statically indeterminate, and the local stress at each point in any cross section is a function of the stiffness morphology

of the whole beam. External loading is not random, but reaction forces are, due to their statistical correlation with the

beam morphology. The case of one degree of indeterminacy is studied here, for simplicity. The strength and reliability

of the beam, being a stochastic function of local stresses, is therefore morphology dependent, in addition to (coupled

with) the classical inherent probabilistic nature, associated with surface defects and irregularities. This dependence is

found analytically as a function of external loading shape. A simple design formula for the bound of these effects on the

beam strength has been found, covering any possible external loading. For example, for a beam of 10 grains (com-

pliance correlation length of 0:1L) and a 10% compliance variance, the bound of the heterogeneity effect on strength is
about 8%.
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1. Introduction and motivation

Microsize beams (microbeams) are routinely used in MEMS applications such as sensors and actuators.

These microstructures are usually linear elastic, brittle, and their reliability (related to strength), is strongly

dependent on surface properties. In addition, their basic sub-element (grain) size is not negligible, when

compared to some typical overall dimension (length, thickness), so the structure is not homogeneous. For

example, in the case of microbeams made of polycrystals, material heterogeneity is expected to have a

strong effect on strength due to local stress concentrations, caused by nonuniform deformations of

neighboring grains. This is in spite of the extremely uniform dimensions and surface smoothness, which are
obtained by MEMS technology. Therefore, the above heterogeneities can still be regarded as ‘‘equivalent

surface defects’’ for the analysis of strength.
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Consider as a reference the problem of finding the strength reliability of a homogeneous Euler–Bernoulli

beam, subjected to a nonrandom external loading. For statically determinate cases, stresses are independent

of moduli. Failure is governed by surface defects and local stress concentrations, which are random.

Therefore, if the failure probability of a unit length of the beam is given, the strength reliability of the whole
beam is found by direct integration. This type of problem has been studied extensively both for static

(Elishakoff, 1983) and dynamic (Lin and Cai, 1995) conditions.

Now let the beam be longitudinally heterogeneous, i.e., the material is uniform through the cross section

but stochastically nonuniform along the length of the beam. For statically determinate cases, the stresses

are still found merely from equilibrium considerations and are not correlated to moduli. Deflections can

also be found directly (Koyluoglu et al., 1994; Beran, 1998; Elishakoff et al., 1999). As for the homogeneous

case, the strength reliability of the whole beam can be calculated exactly.

Indeterminate beams pose new complications for reliability analysis. Local stresses are morphology
dependent (moduli, grain size statistics etc.) through structural compatibility conditions. Moreover, reac-

tion forces are also randomly coupled with heterogeneity. Therefore, three sources of random fields are

nonlinearly involved: material heterogeneity, reaction forces and strength.

Approximations for the average reaction forces and their statistical variance for heterogeneous inde-

terminate beams have been recently found analytically (Altus, 2001). The results are used in the following,

to study the strength reliability of statically indeterminate, isotropically heterogeneous beams, based on the

weakest link approach. The main objective here is to assess the contribution of stiffness heterogeneity,

which is caused by indeterminacy, on the strength reliability. In addition, the magnitude of this phe-
nomenon is expected to depend on the ‘‘shape’’ of the external loading. Therefore, a proper bound for this

effect, which covers all possible shapes, is desirable for design.

The probabilistic nature of the strength of polysilicon microstructures, has been experimentally observed

(Jones et al., 1999; Greek et al., 1999), but the models used so far have not considered morphology effects.

The general problem of strength of heterogeneous media, including morphological effects and using

more advanced failure criteria have been studied extensively (for example, Herrmann and Roux, 1990;

Jeulin, 1993). However, the above compatibility boundary effects were not considered.

The paper is presented in the following order. Section 2 introduces basic relations of stochastic strength,
from which the justification of a power law approximation for failure probability of a beam of unit length is

established. In Section 3, a heterogeneous beam having one degree of indeterminacy is studied (clamped-

simply supported), and the statistical average and variance of the reaction force is found. These results are

used in Section 4, to analytically find the strength reliability of a beam under any specific (nonrandom)

loading. An upper bound is then proposed for any loading shape. A discussion on the quality of this bound

is given in Section 5 with some loading examples for comparison.

2. Basic relations of random strength

2.1. Consequences of the weakest link approach

Consider a 1 D rod under a concentrated (P ) and distributed (qðxÞ) loads as shown in Fig. 1. The
strength of the rod is controlled by surface defects, microstructure heterogeneity etc., (i.e., random).

Fracture mechanics tools are difficult to apply, since defect geometries and stress concentration fields are

too complex to be measured quantitatively. Therefore, in order to find the strength reliability of the rod, we

have to rely on some reference (experimental) data, which corresponds to the failure probability of an

element of a standard (but arbitrarily chosen) length ‘, subjected to a uniform stress �rr, i.e.,
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F ð�rr; ‘Þ ¼
Z �rr

0

f ðr0; ‘Þdr0 ¼ 1� Gð�rr; ‘Þ; ð2:1Þ

where F and G are failure and survival probabilities, respectively, and f is the failure probability density.
The problem now is to express the failure probability of the whole rod as a function of the properties of the

standard element.

Divide the rod of the total length L into n equal elements of length ‘ ¼ L=n. Apply the weakest link
approach for strength and assume that the failure probabilities of the elements are not correlated. Then,

GðrðxÞ; LÞ ¼
Yn
i¼1

Gð�rri; ‘Þ; ð2:2Þ

where now G is a functional of rðxÞ. We take that ‘ is small enough (n large), such that a uniform stress ð�rriÞ
inside each basic element (i) is assumed. For any G, we can define (Weibull, 1951):

gð�rr; ‘Þ ¼ � lnGð�rr; ‘Þ ! F ð�rr; ‘Þ ¼ 1� expð�gð�rr; ‘ÞÞ: ð2:3Þ
From (2.3), (2.2) can be rewritten as:

gðrðxÞ; LÞ ¼
Xn
i¼1

gð�rri; ‘Þ: ð2:4Þ

This additive property of g will be used in the following.
Consider now a special case, for which qðxÞ ¼ 0 and the stress field along the rod is uniform. Given L, the

survival probability of the whole rod is a physical (measurable) quantity, which must be independent of n.
Therefore, gð�rr; LÞ is invariant with the size of ‘. Using (2.4) for two arbitrary lengths ‘1 and ‘2 yields:

gð�rr; LÞ ¼ n1gð�rr; ‘1Þ ¼ n2gð�rr; ‘2Þ; n1‘1 ¼ n2‘2 ¼ L: ð2:5Þ
Combining (2.5a) and (b) we have:

‘2gð�rr; ‘1Þ ¼ ‘1gð�rr; ‘2Þ: ð2:6Þ
Now define

g0ð�rrÞ ¼
gð�rr; ‘1Þ

‘1
¼ gð�rr; ‘2Þ

‘2
¼ gð�rr; 1Þ ð2:7Þ

which is a material property independent of length. Therefore,

gð�rr; ‘Þ ¼ ‘ � g0ð�rrÞ: ð2:8Þ
Substituting in (2.4) we have:

gðrðxÞ; LÞ ¼
Xn
i¼1

gð�rri; ‘Þ ¼
Xn
i¼1

g0ð�rriÞ � ‘; ð2:9Þ

Fig. 1. One dimensional heterogeneous rod, loaded by qðxÞ and P .
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which, in a continuous form leads simply to:

gðrðxÞ; LÞ ¼
Z L

0

g0ðrðxÞÞdx ¼
1

‘

Z L

0

gðrðxÞ; ‘Þdx ¼ L
‘

Z 1

0

gðrðxÞ; ‘Þdx; ð2:10Þ

where x in the last term is normalized by L. The above is a form of the very well known dependence of the
survival probability of a structure on the stress field, used frequently for ceramics (Davidge, 1979). In-

terestingly, from (2.10) we obtain that when L ! 0, g ! 0 and G ! 1, which means that a vanishingly small

element never fails. However, this limit possesses no practical difficulty, since measurable elements have
always a finite size and a finite strength. This singularity feature resembles the theoretical linear elastic stress

field near cracks, where infinite stresses correspond to a zero crack tip radius, although the elastic energy in

a finite volume near the tip is bounded.

We see that (2.10) provides a convenient representation of the survival probability of the rod, in terms of

its unit strength (‘‘material’’) property. Similar to statistical thermodynamics, where entropy is defined by a

quantity derived from a logarithm of probabilities, g can be conceived by (2.3) as an ‘‘entropy of strength’’.

2.2. Weibull distribution function and the power law approximation

Let us confine our study to loads of low failure probability, which is very practical in MEMS, where high

reliability is in demand. Then, the above properties of g can be used for two very useful approximations,
which will help us in achieving analytical results in the following. First, from (2.3) we have (Ashby and

Jones, 1986):

gð�rr; ‘Þ ffi F ð�rr; ‘Þ: ð2:11Þ

Secondly, high reliability means low stresses (relative to the average failure stress). Therefore g can be
approximated in the range of low stresses as a power function:

gð�rr; ‘Þ ¼ �rr
r‘

 !b

: ð2:12Þ

Using (2.12) and inserting in (2.3), we get the Weibull (1951) distribution function, extensively used for

failure probability analysis of brittle materials:

FW ð�rr; ‘Þ ¼ 1� exp

0
@� �rr

r‘

 !b
1
A; ð2:13Þ

where r‘ is approximately the ensemble average strength and b is the material shape parameter. We see that
FW is a good approximation for a large class of distributions, as long as the stresses are low enough. When
the information for high stresses is important too, it may fit only special cases.

When both (2.11) and (2.12) are used, we have simply:

F ðr; ‘Þ ffi gð�rr; ‘Þ ¼ �rr
r‘

 !b

: ð2:14Þ

We see that not only that the power form is very convenient for analytical manipulations, it is a good

approximation for any distribution in the low stress range and is not confined to the Weibull distribution.

As a demonstration for the power law accuracy and capacity, consider a rod of a length of 10 basic

elements (L=‘ ¼ 10), having a Weibull failure probability density (associated with ‘) for which the shape
parameter b equals to 4. From (2.1) and (2.2), the failure probability of the whole rod is:
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F ð�rr; LÞ ¼ 1� ½1� F ð�rr; ‘Þ
L=‘: ð2:15Þ

Now we calculate (2.15) directly by using FW (2.13) and by the power approximation (2.14). Results are
shown in Fig. 2 and the relative difference is also plotted for convenience. It is seen that the maximum error

is in the order of 3%. Higher b and/or n show even smaller errors. It is therefore reasonable to assume, that
the power law approximation for the failure probability of a standard element is expected to produce good

predictions for many other failure probability functions (not just Weibull), as long as L=‘ is large enough. It
should be noted also that for �rr=r‘ > 1, the power law results are erroneous (failure probability greater than
1), but this stress region is not of interest here.

Finally, since FW is commonly used for brittle materials, it is important to note that the Weibull dis-
tribution possesses various properties as related to its pdf gradient ðf;rÞ at r ¼ 0 for different b values, i.e.,

f;rð0Þ ¼ F;rrð0Þ ¼

¼ 0; ðb > 2Þ
> 0; ðb ¼ 2Þ

¼ þ1; ð1 < b < 2Þ
> �1; ðb ¼ 1Þ

2
664

3
775: ð2:16Þ

Therefore, practical values of b are expected to be greater than 2, a conclusion which will be used in the
following. Indeed, it is found that 5 < b < 25 for most brittle materials (Davidge, 1979; Elbrecht and
Binder, 1999; Greek et al., 1999; Jones et al., 1999; Sharpe et al., 1999).

3. Average and variance of the indeterminate reaction force

Consider a clamped-simply supported beam (indeterminacy of degree 1), shown schematically in Fig. 3.

The internal bending moment is:

MðxÞ ¼ MR þMq; MR ¼ R � x; Mq ¼
Z x

x0¼0
qðx� x0Þ � x0 dx0; ð3:1Þ

R is the reaction force at x ¼ 0, chosen to be the ‘‘indeterminate parameter’’. MRðxÞ and MqðxÞ are the
internal bending moment distributions caused separately by R and qðxÞ, respectively. R is found by the
compatibility condition:

Fig. 2. Failure probability of a rod of length L. Comparison between data based on a Weibull distribution function, and a power law
approximation, both for elements of length L=‘ ¼ 10, and b ¼ 4.
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o

oR

Z L

0

1

2
M2SðxÞdx ¼

Z L

0

MxSðxÞdx ¼ 0; ð3:2Þ

where (3.1) is used and SðxÞ is the cross sectional bending compliance, i.e.,

SðxÞ ¼ ½EIðxÞ
�1 ð3:3Þ
E is Young�s modulus and I is the appropriate cross sectional inertia term.
For a homogeneous beam, define:

SðxÞ ¼ Sh; Rh ¼ RðShÞ; MRhðxÞ ¼ Rhx; Mh ¼ Mq þMRh : ð3:4Þ
Then, applying (3.2) we haveZ L

0

Mhxdx ¼
Z L

0

ðMRh þMqÞxdx ¼ 0; ð3:5Þ

so that

Rh ¼
3

L3

Z L

0

Mqxdx; ð3:6Þ

which is independent of Sh.
Before continuing, we define the convolution notation (
), which will be used throughout for conve-

nience. If we have two, single variable functions uðxÞ and vðxÞ, then,

u 
 v ¼
Z

uðxÞvðxÞdx; ð3:7Þ

where the limits of integration are defined explicitly for each case. When both u and v are two variable
functions, we define similarly:

u 
 v ¼
Z

uðx1; x2Þvðx2; x3Þdx2: ð3:8Þ

Therefore, (
) act on integration the same way inner products acts on tensors, i.e., if S, u, v are three
functions of a single variable x, the notation

uv ¼ uðx1Þvðx2Þ ð3:9Þ
is defined as an outer functional product. Using the above, we write

u 
 ðSSÞ 
 v ¼
Z Z

uðx1Þ½Sðx1ÞSðx2Þ
vðx2Þdx1 dx2; ð3:10Þ

Fig. 3. A beam with one degree of indeterminacy.
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where (SS) is an outer functional product. In fact, (
) is treated here as an inner product between tensors or
vectors of infinite terms in the appropriate dimension.

Now we write (3.2) in a normalized form, using the above convolution notations:

ðMxÞ 
 S ¼ 0; M ! M
RhL

; S ! S
hSi ; x ! x

L
; R ! R

Rh
; hSi ! 1 ð3:11Þ

which will also be maintained throughout. The beam is considered as statistically homogeneous, therefore

hSi stands for both the spatial and ensemble averages, and is not a function of x. The form in (3.11a) is
identical to all beam problems having ‘‘one degree’’ indeterminacy. Using (3.1)–(3.4), (3.11) and the con-

volution notation, we obtain an expression for the reaction force for a heterogeneous beam:

R ¼ � ½Mqx
 
 S
½MRhx
 
 S

¼ � ½Mqx
 
 S
x2 
 S : ð3:12Þ

To find the survival probability (reliability) for each realization (i.e., SðxÞ is given), we find R from (3.12),
insert in (3.1), find the stresses along the beam and use (2.10) and (2.14) to obtain its failure probability.

However, it is not practical to measure S of every beam, so we rely on its statistical (morphological) in-
formation, usually the n points correlation functions such as hSðxÞi, hS0ðx1ÞS0ðx2Þi, hS0ðx1ÞS0ðx2ÞS0ðx3Þi etc.
Using this partial information of heterogeneity, we intend to find partial (statistical) data on the beam
strength (average failure load, variance and reliability). To achieve this goal, we have to find the relevant

statistical information of R, in this case hRi and hR02i.
To obtain hRi, we notice from (3.12) that it is a nonlinear functional of SðxÞ and can be found ana-

lytically only by successive approximations. Using an expansion near S ¼ hSi ¼ 1 we have
R ¼ RjhSi þ R;S jhSi 
 S0 þ 1

2
R;SS

��
hSi 
 
ðS

0S0Þ þ � � � ; S0 ¼ S � 1; ð3:13Þ

where functional differentiations (variations) are used. Recalling the resemblance of our convolutions with

tensor operations, we see that the variations in (3.13) are always ‘‘external’’ in the following sense:

R;SShSi ðx;X Þ � d2R
dSðxÞdSðX Þ

����
S¼hSi

¼ d2R
dS0ðxÞdS0ðX Þ

����
S0¼0

: ð3:14Þ

Averaging (3.12), the second term vanishes identically. Using (3.14) and inserting (3.12) in (3.13) we obtain:

hRi ¼ 1þ DRh ffi 1þ
ðMhxÞ 
 hS0ðxÞ � S0ðX Þi 
 ðX 2Þ

ðx2 
 1Þ2
; ð3:15Þ

where MhðxÞ is the internal moment for the indeterminate homogeneous beam (a function of loading but
morphology independent). We see that the average reaction force differs from the one for the homogeneous

case by a term, which depends on the microstructure (two-point compliance correlation) and the loading

shape.

Eq. (3.15) provides a solution for any given morphology, through hS 0S0i. However, more than interested
in finding a particular solution for a specific correlation function, we prefer to find some general features,

which correspond to certain morphological classes. Therefore, we examine the cases where the statistical
correlation length is relatively small, i.e., hS0S0i contributes to the integral in (3.15) (i.e., nonzero) only when
jx� X j is small enough. Then, it is convenient to write (3.15) in the form

DRh ffi
ðMhxÞ 
 hS0ðxÞ � S0ðxþ eÞi 
 ðxþ eÞ2

ðx2 
 1Þ2
; e ¼ X � x; ð3:16Þ

where now the convolution on the right side of the numerator is on e. Since hS0S0i is a symmetric function of
e and independent of x (statistically homogeneous material) we have
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DRh ffi
ðMhxÞ 
 ðx2hS0S0i 
 1þ 2xhS0S0i 
 e þ hS0S0i 
 e2Þ

ðx2 
 1Þ2
: ð3:17Þ

The second term in the numerator vanishes identically. The third term is two orders of e smaller than the
first, so (3.17) is simplified to:

hRi ffi 1þ ððMhxÞ 
 ðx2ÞÞ � hS0 
 S0i
ðx2 
 1Þ2

: ð3:18Þ

Finally, a morphological correlation length (k) can be defined as:

k ¼ hS0 
 S0i
hS02i ð3:19Þ

and therefore (3.18) can be simplified further to:

hRi ¼ 1þ khS02i � Mh 
 x3

ðx2 
 1Þ2
¼ 1þ khS02i � 9Mh 
 x3: ð3:20Þ

k is associated with the typical grain size, for cases when there is no moduli correlation between adjacent
grains. More details on the above (although in different terms), including the loading shape effect can be

found elsewhere (Altus, 2001). We see that the deviation of hRi from Rh is proportional to the grain size,

stiffness variance and is a function of the loading shape.

By the same procedures (details are not given here), the reaction force variance can also be found:

hR02i ¼ ðMhxÞ 
 hS0S0i 
 ðMhX Þ
ðx2 
 1Þ2

ffi khS02i � M
2
h 
 x2

ðx2 
 1Þ2
¼ khS02i � 9M2

h 
 x2: ð3:21Þ

Both (3.20) and (3.21) will be used in the following.

4. Strength reliability of an indeterminate beam

Using (2.10), (2.12) and (2.14), the failure probability of a beam, which is loaded by a distributed load

qðxÞ and an additional (arbitrary, nonrandom) external force R is:

FR ¼ L
‘

Z 1

0

ðrðx;RÞÞb dx; ð4:1Þ

where x is the normalized length and r is the normalized (by r‘) stress. From elementary Euler–Bernoulli

analysis we have:

rðx;RÞ ¼ B �Mðx;RÞ; ð4:2Þ

where B is a factor, related to the beam cross section geometry. We consider here failure due to near surface
stresses only, appropriate for brittle materials subjected to bending. For simplicity, we take symmetric cross

section geometry, where the maximum and minimum stresses are found at equal distances, but on opposite
sides from the cross sectional center of gravity. Inserting (4.2) in (4.1) yields:

FR ¼ L
‘
Bb

Z 1

0

jMðx;RÞjb dx: ð4:3Þ

Recall that (4.3) is the failure probability of a determinate beam, with nonrandom loadings qðxÞ and R.
Considering now the indeterminate case, R is a random variable which is correlated to the heterogeneity.
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The failure probability for the whole statistical ensemble of beams of different R values, can now be written
as:

Fb ¼
Z 1

�1
FR � pR dR; ð4:4Þ

where pRðRÞ is the probability (ensemble) density function of R. Eq. (4.4) may be interpreted as the sum-
mation over failure probabilities of each possible value (range) of R, multiplied by the probability of
having R in this range. In other words, Fb is just the statistical average of the failure probability, with respect
to R:

Fb ¼ hFRðRÞi: ð4:5Þ
Expansion of FR near hRi and averaging yields:

Fb ¼ FRjhRi þ 1
2
FR;RRjhRi � hR02i þ � � � : ð4:6Þ

Since hRi is unknown (in the sense that it is not given as part of the data, or can be calculated exactly), we
have to approximate Fb with association to Rh. From (3.18) and (3.21) we have that DRh (¼ hRi � Rh) and
hR02i are both in the order of hS02i. Therefore, if

FRjhRi ¼ FRjRh
þ FR;RjRh

� DRh þ � � � ð4:7Þ
then the second term in (4.7) is in the same order (with respect to hS02i) as the second term in (4.6). Thus,
(4.6) can be also approximated as:

Fb ¼ FRjRh
þ FR;RjRh

� DRh þ 1
2
FR;RRjRh

� hR02i þOðR03Þ; ð4:8Þ

where the first term is the zero order (homogeneous) approximation and the other two terms reflect the

contribution of stiffness heterogeneity to the overall failure probability. Calculating the coefficient of the

third term in (4.8) at Rh instead of hRi is permitted since the difference between the two is in the order
smaller than hS0S0S0i.
Our main goal is to study the relative heterogeneity effect on Fb, i.e., the ratio between the sum of the

second and third term in (4.8) to the first. To find it, note first that from (3.1) we have:

M ¼ Mq þ xR ! M > 0! jM j ¼ Mq þ xR
M < 0! jM j ¼ �ðMq þ xRÞ : ð4:9Þ

Therefore,

jM j;R ¼ x; M > 0
�x; M < 0

� �
¼ signðMðxÞÞ � x: ð4:10Þ

Using (4.10) and (4.3) we obtain:

FR;R ¼ b jM jb�1 
 xjM>0

h
� jM jb�1 
 xjM<0

i
¼ bjM jb�1 
 ðsignðMÞ � xÞ; ð4:11Þ

which can be either positive or negative, depending on the sign of M along x. To calculate the second
derivative (F;RR), we first show that ðsignðMÞÞ;R ¼ 0:

½signðMÞ
;R ¼ ðM � jM j�1Þ;R ¼ M;RjM j�1 �M jM j�2jM j;R ¼ jM j�2½M;RjM j �M jM j;R


¼ jM j�2½x � jM j �M � signðMÞ � x
 ¼ jM j�2½x � jM j � jM j � x
 ¼ 0: ð4:12Þ

Then, differentiating (4.11) yields

FR;RR ¼ bðb � 1Þ � jM jb�2ðsignðMÞ � xÞ 
 ðsignðMÞ � xÞ ¼ bðb � 1Þ � jM jb�2 
 x2 ð4:13Þ
which is always positive.
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Returning to (4.8), it can be shown that although DRh and hR02i are of order hS0S0i, the second term is
expected to be much smaller than the third. To see this, we use (3.20), (3.21), (4.10), and (4.11), and find the

ratio between the third and the second terms of (4.8) as:

r ¼ Fb2
Fb3

¼ 2

ðb � 1Þ
jMhjb�1 
 ðsignðMhÞ � xÞ
h i

½Mh 
 x3


½jMhjb�2 
 x2
½M2
h 
 x2


: ð4:14Þ

From (3.5) we obtain that when b ¼ 2, the LHS square brackets of the numerator in (4.14) vanishes
identically. Moreover, (3.5) shows that MhðxÞ must have both positive and negative parts, so that both
integrands of the convolutions of the numerator have two parts which partially cancel each other, while in

the denominator, the integrands are positive along the whole integration path. Besides, r tends to 2=b for
high enough b values.
We therefore take that r � 1 for the entire range of b, neglect the second term in (4.8) and write the effect

of the stiffness heterogeneity on the strength reliability of the beam as the ratio (g) between the third and the
first terms only. Using (4.3), (4.8) and (4.13) we obtain:

g ¼ 1
2

FR;RRjRh
� hR02i

FRjRh

¼ khS02ibðb � 1Þ � 9
2

g1 � g2
g3

; ð4:15Þ

where

g1 ¼ jMhjb�2 
 x2; g2 ¼ M2
h 
 x2; g3 ¼ jMhjb 
 1: ð4:16Þ

Therefore, g is a function of jMhj only. The distinction made in (4.15) between bðb � 1Þ and the other
factors stems from the fact that this factor is not a function of loading (as gj), but depends on the power law

strength distribution and the double differentiation from the Taylor expansion. Thus, (4.15) shows ex-

plicitly the effect of various properties, coming from different sources on g: microstructure by k, material
inhomogeneity by hS02i, strength randomness by b, and loading shape by Mh.

Although (4.15) is explicit and straightforward to calculate for any given Mh (through qðxÞ and bÞ, it is
also desirable for design purposes, to study what are those loading shapes for which g receives its extreme
values, or alternatively, find some bounds (if such bounds exist) for any possible loading (qðxÞ). Instead of
writing the direct relation between g and qðxÞ, we use the fact that g is an explicit functional of jMhj, and
look for jMhj for which g is maximal. Then, we find the associated loading qðxÞ through (3.1) and (3.5).
From (4.15) it is clear that g is insensitive to the magnitude of Mh. Therefore, it is convenient to choose Mh

such that g3 is equal to an arbitrary constant C3. Then, the two conditions:

dg
djMhj

¼ 0$ d
djMhj

½ðg1g2Þ þ xðC3 � g3Þ
 ¼ 0; ð4:17Þ

where x is a Lagrange multiplier, are equivalent. Inserting (4.16) into (4.17b) and taking the variation with
respect to jMhj, we obtain an equation of the form:

a1jMhjb�3x2 þ a2jMhjx2 þ a3jMhjb�1 ¼ 0; ð4:18Þ
where a1, a2, a3 are constants, i.e., not functions of x, even though a1, a2, a3 are convolutions of the un-
known moment function:

a1 ¼ ðb � 2ÞjMhj2 
 x2; a2 ¼ 2jMhjb�2 
 x2; a3 ¼ xbC3: ð4:19Þ
Eq. (4.18) has an exact solution when b ¼ 4, for which g1 ¼ g2, in the form

b ¼ 4! jMhj ¼ Cx ! g ¼ 10:8 � khS02i; ð4:20Þ
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while for other b values a simple power law solution is impossible (other analytic solutions could not be
found). Therefore, we use the fact that g1 and g2 are always positive to write:

gmax6 gmax1 gmax2 ¼ gþ; ð4:21Þ
where gþ is an upper bound for g. Using the same procedure as in (4.17b) for g1 and g2 separately we
obtain:

a1jMhjb�3x2 þ a3jMhjb�1 ¼ 0! jMhjþ1 ¼ C1x; ð4:22Þ

a2jMhjx2 þ a3jMhjb�1 ¼ 0! jMhjþ2 ¼ C2x2=ðb�2Þ; ð4:23Þ
C1 and C2 are constants, calculated by the additional condition g3 ¼ C3 for each case. Inserting (4.22) and
(4.23) in (4.16) and (4.15) and integrating yields:

gþ ¼ khS02i � bðb � 1Þ � 9
2

b � 2
3b � 2

� �1�2=b
� ðb þ 1Þ�2=b: ð4:24Þ

Note that although gþ is an upper bound for the effect of morphology on strength, the moment distri-

butions in (4.22) and (4.23) are not realizations of MðxÞ for such bounds, except for b ¼ 4, when
jMh1j ¼ jMh2j ¼ Cx. In this special case, the bound is a real supremum. Since b > 2 for common materials,
the singular point (b ¼ 2=3) in (4.24) is not physical. Moreover, it is easy to see that for (b > 5) values,
(4.24) yields:

gþ
ðb>5Þ < ð3=2Þ � khS02i � bðb � 1Þ; ð4:25Þ

which can be proposed as a convenient design formula. For completeness, it should be noted that the

factors (1/2) and (3) in (4.25) come from the second order approximation of the Taylor expansion and the

linear relation between MR and R, respectively.
The practical significance of (4.25) can be demonstrated by taking an example of a beam for which khS02i

is in the order of �0.01, 10 < b < 15, which, by (4.25) leads to 0:92 < gþ < 2:3. This means that the
contribution of the stiffness heterogeneity to the failure probability of the beam can be more important

(gþ > 1) than the one caused by the classical strength randomness (i.e., homogeneous beam).
We can ‘‘transfer’’ the stiffness heterogeneity effect to the loading space, i.e., asking how much the

magnitude of the allowable (design) external loads changes for a given failure probability, due to the fact

that the material is not homogeneous. From (4.3) and (4.6) we have:

Fb ffi FRjhRi þ 1
2
FR;RRjhRi � hR02i ¼ ðk1 þ k2Þqb

0 ; ð4:26Þ

where q0 is the loading magnitude for a given failure probability Fb, and k1, k2 are the relative contributions
due to the strength randomness and moduli heterogeneity, respectively. From (4.15) we have,

k2
k1

� �þ

¼ gþ: ð4:27Þ

Now, we compare two calculations for the same problem, with and without the heterogeneity effect, for the

same reliability prediction, i.e.,

F homb ¼ k1ðqhom0 Þb; F hetb ¼ ðk1 þ k2Þðqhet0 Þb; F homb ¼ F hetb : ð4:28Þ

Then, (4.27) and (4.28) yields:

Dq0 ¼ 1�
qhet0
qhom0

¼ 1� 1

�
þ k2
k1

��1=b

¼ 1� ð1þ gþÞ�1=b: ð4:29Þ
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Taking the same values for the practical example as above, Eq. (4.25) predicts that a maximal (upper

bound) reduction of 8.2% from the classical design load should be added (i.e., safety factor of 1.09) for all

materials (b > 2) and khS02i � 0:01.
Both bound representations ((4.24) and (4.29)) are shown in Fig. 4 for the whole practical range

2 < b < 25. We see that the effect on reliability is monotonic, while the effect on the design load has the
above maximum at b � 22, a value within the range for brittle materials.
The nonmonotonic behavior of (4.29) reflects a complex interaction between two stochastic sources,

assumed uncorrelated in this study: moduli morphology (reflected here by khS02i) and strength (b). For
example, a very high b value means that the material is relatively homogeneous with respect to strength.
Therefore, failure of the beam is expected to occur at the point of maximum stress, i.e., the loading shape is

immaterial, which means weak heterogeneity effect. On the other hand, since hR02i depends solely on moduli
heterogeneity, the maximum stresses will still be stochastic, and since b is high, the sensitivity of the stress at
this specific point to the beam failure is high too, inducing a strong stochastic strength effect.

5. Discussion

As for any upper bound, its quality is evaluated by finding how close this bound is to the supremum.

Lacking analytical solutions for those loading shapes, which yield a supremum for the strength reliability,
we find the heterogeneity effect for a few special cases of load distributions and examine how close their

reliability are to the predicted bound. Results for four loading shapes, explained in the following, are

compared to the upper bound predictions, as shown in Fig. 5.

The first example is a power law distribution for jMhj, motivated by the analytical solution as in (4.22)
and (4.23), i.e.,

jMhj ¼ A � xk: ð5:1Þ

Here we look for the maximal g for all possible k (>0).
Before proceeding further, notice that from mathematical convenience, the solution (and bound) is

found in terms of jMhj and not as a direct function of external loads. To find qðxÞ explicitly from (5.1), we
first use (3.5) and obtain a solution of the form:

Mh ¼ A � xkð1� 2Hðx� x0ÞÞ; ð5:2Þ

where Hðx� x0Þ is a step (Heaviside) function located at x0. Note that for a given jMhj and the condition
(3.5), Mh is not uniquely defined, since one can find other functions with multiple steps which satisfy both
(5.1) and (3.5). For the case of a single step, described by (5.2), we use (3.5) and (5.2) and obtain:

Fig. 4. Effect of stiffness heterogeneity on the beam strength reliability. khS 02 i ¼ 0:01.
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x0 ¼ ð2Þ�1=ðkþ2Þ: ð5:3Þ
The external loading function (qðxÞ) is found by differentiation:

qðxÞ ¼ Mh;xx ¼ A � kxk�2bðk � 1Þð1� 2HÞ � 4dxþ 2d2x2c; ð5:4Þ
where dðx� x0Þ and d2 are the first and second order Dirac functions. The first term in (5.4) is a power law
distribution with a (skew symmetric) step function, the second is a concentrated force and the third is a

concentrated bending moment. The location of the step, force and moment is at x ¼ x0. qðxÞ from (5.4) is
shown schematically in Fig. 6. Note also that (5.4) represents nonphysical singularities at x ¼ 0 for k < 2,
but as will be shown, this problem is not of major importance here.

Inserting (5.1) in (4.15) we obtain

�gg ¼ g

khS02i � bðb � 1Þ ¼
9

2

g1g2
g3

¼ 9
2

kb þ 1
ðkb � 2k þ 3Þð2k þ 3Þ ; ð5:5Þ

where �gg is the net loading shape effect. From (5.5), the value of k, for which g is maximal (gmax) is:

k0 ¼ kð�ggmaxÞ ¼
1

b
ð3b3 � 5b2 � 4b þ 4Þ1=2

ðb � 2Þ

"
� 1
#
: ð5:6Þ

Fig. 5 shows �ggmax after inserting (5.6) in (5.5). It is seen that �ggmax is very close to the bound and equals the
bound at b ¼ 4, as expected. However, as seen from (5.6), some b values may lead to k0 < 2, i.e., loading

Fig. 5. Effect of various loading realizations on �gg as a function of b. The quality of the upper bound is measured by the smallest
difference with any possible realization. khS02 i ¼ 0:01.

Fig. 6. Loading configuration of Eq. (5.4).
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singularities. Therefore, an additional nonsingular parametric case is examined for comparison (jMhj ¼
expðkxÞ). The external loading distribution qðxÞ is similar to the one shown in Fig. 6, and �ggmax is found by
the same procedure. Fig. 5 shows that the two cases (power law and exponential) gave similar results. We
therefore conclude, that the bound in (4.24) is very close to the supremum.

Another important issue concerns those loading shapes, which cause the least strength-heterogeneity

effect. For demonstration, two additional loading examples (external moment at x ¼ 0 and a concentrated
force at x ¼ 0:5) are also shown in Fig. 5 and show that the heterogeneity effect may also be negligibly small
for some loading shapes.

Finally, an accuracy study, which evaluates the various approximations made along the way for the

analytical solution, was carried out. A test case for which jMhj ¼ expðkxÞ was chosen, with b ¼ 22 and
k ¼ 0:45, producing a large morphology-strength effect (see Fig. 4). A common two-point probability
function was chosen as:

hS0ðxÞS0ðX Þi ¼ hS02i exp
�
� jx� X j

k=2

�
: ð5:7Þ

Note that (5.7) must be written in a form that fits (3.19). Then, the relative morphological effect (g) was
calculated by numerical integration of (4.8) for each k. DRh and hR02i were calculated directly from (3.15)
and (3.21a) without approximations. The ratio jgnumeric � ganalyticj=gnumeric, which is the relative deviation
(error) from the accurate numerical solution is shown in Fig. 7. It is seen that the error diminishes as k
decreases as expected, which validates the various approximations taken to reach the analytical solution.

6. Conclusion

Some general conclusions from this study are:

1. For the example studied here, the heterogeneity effect on strength was found to be 8% for a relative

microsize scale of 1%, showing the importance of the phenomenon for future design of small size hetero-

geneous structures.

2. It has been shown, that the morphology effect on reliability is proportional to the two-point correlation
length (roughly the ‘‘grains size’’). However, this analytical prediction is valid only for ‘‘small grains’’

Fig. 7. Relative error of the morphology-strength effect (g), between numerical integration and analytical results, for different cor-
relation lengths k. Exponential loading shape: jMhj ¼ expðkxÞ, k ¼ 0:45, b ¼ 22.
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and small statistical variance of the moduli. Expanding the analysis beyond this range is of great impor-

tance.

3. Moduli morphology and strength have been considered here as statistically independent material pro-

perties, while practically there is definitely a statistical correlation between the two. This is an important
subject, which should be studied theoretically and verified experimentally.

4. The interaction between material morphology, loading geometry and the basic strength distribution

function is complex and nonlinear even for a case of a simple beam, having one degree of indeterminacy.

This may explain the difficulty in finding predictive tools for more general microstructures, and suggests

that new approaches should be considered.
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